Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.033
Filtrar
1.
Sci Rep ; 14(1): 7694, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565889

RESUMO

The proteome holds great potential as an intermediate layer between the genome and phenome. Previous protein quantitative trait locus studies have focused mainly on describing the effects of common genetic variations on the proteome. Here, we assessed the impact of the common and rare genetic variations as well as the copy number variants (CNVs) on 326 plasma proteins measured in up to 500 individuals. We identified 184 cis and 94 trans signals for 157 protein traits, which were further fine-mapped to credible sets for 101 cis and 87 trans signals for 151 proteins. Rare genetic variation contributed to the levels of 7 proteins, with 5 cis and 14 trans associations. CNVs were associated with the levels of 11 proteins (7 cis and 5 trans), examples including a 3q12.1 deletion acting as a hub for multiple trans associations; and a CNV overlapping NAIP, a sensor component of the NAIP-NLRC4 inflammasome which is affecting pro-inflammatory cytokine interleukin 18 levels. In summary, this work presents a comprehensive resource of genetic variation affecting the plasma protein levels and provides the interpretation of identified effects.


Assuntos
Estudo de Associação Genômica Ampla , Proteoma , Humanos , Proteoma/genética , Estônia , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas/genética , Proteínas Sanguíneas/genética , Variações do Número de Cópias de DNA/genética
2.
BMC Plant Biol ; 24(1): 244, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38575936

RESUMO

BACKGROUND: This study aims to decipher the genetic basis governing yield components and quality attributes of peanuts, a critical aspect for advancing molecular breeding techniques. Integrating genotype re-sequencing and phenotypic evaluations of seven yield components and two grain quality traits across four distinct environments allowed for the execution of a genome-wide association study (GWAS). RESULTS: The nine phenotypic traits were all continuous and followed a normal distribution. The broad heritability ranged from 88.09 to 98.08%, and the genotype-environment interaction effects were all significant. There was a highly significant negative correlation between protein content (PC) and oil content (OC). The 10× genome re-sequencing of 199 peanut accessions yielded a total of 631,988 high-quality single nucleotide polymorphisms (SNPs), with 374 significant SNP loci identified in association with the nine traits of interest. Notably, 66 of these pertinent SNPs were detected in multiple environments, and 48 of them were linked to multiple traits of interest. Five loci situated on chromosome 16 (Chr16) exhibited pleiotropic effects on yield traits, accounting for 17.64-32.61% of the observed phenotypic variation. Two loci on Chr08 were found to be strongly associated with protein and oil contents, accounting for 12.86% and 14.06% of their respective phenotypic variations, respectively. Linkage disequilibrium (LD) block analysis of these seven loci unraveled five nonsynonymous variants, leading to the identification of one yield-related candidate gene and two quality-related candidate genes. The correlation between phenotypic variation and SNP loci in these candidate genes was validated by Kompetitive allele-specific PCR (KASP) marker analysis. CONCLUSIONS: Overall, molecular markers were developed for genetic loci associated with yield and quality traits through a GWAS investigation of 199 peanut accessions across four distinct environments. These molecular tools can aid in the development of desirable peanut germplasm with an equilibrium of yield and quality through marker-assisted breeding.


Assuntos
Arachis , Estudo de Associação Genômica Ampla , Arachis/genética , Locos de Características Quantitativas/genética , Melhoramento Vegetal , Mapeamento Cromossômico/métodos , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
3.
Plant Cell Rep ; 43(5): 128, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652306

RESUMO

KEY MESSAGE: GWAS identified six loci at 25 kb downstream of WAK2, a crucial gene for cell wall and callus formation, enabling development of a SNP marker for enhanced callus induction potential. Efficient callus induction is vital for successful oil palm tissue culture, yet identifying genomic loci and markers for early detection of genotypes with high potential of callus induction remains unclear. In this study, immature male inflorescences from 198 oil palm accessions (dura, tenera and pisifera) were used as explants for tissue culture. Callus induction rates were collected at one-, two- and three-months after inoculation (C1, C2 and C3) as phenotypes. Resequencing generated 11,475,258 high quality single nucleotide polymorphisms (SNPs) as genotypes. GWAS was then performed, and correlation analysis revealed a positive association of C1 with both C2 (R = 0.81) and C3 (R = 0.50), indicating that C1 could be used as the major phenotype for callus induction rate. Therefore, only significant SNPs (P ≤ 0.05) in C1 were identified to develop markers for screening individuals with high potential of callus induction. Among 21 significant SNPs in C1, LD block analysis revealed six SNPs on chromosome 12 (Chr12) potentially linked to callus formation. Subsequently, 13 SNP markers were identified from these loci and electrophoresis results showed that marker C-12 at locus Chr12_12704856 can be used effectively to distinguish the GG allele, which showed the highest probability (69%) of callus induction. Furthermore, a rapid SNP variant detection method without electrophoresis was established via qPCR-based melting curve analysis. Our findings facilitated marker-assisted selection for specific palms with high potential of callus induction using immature male inflorescence as explant, aiding ortet palm selection in oil palm tissue culture.


Assuntos
Arecaceae , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Polimorfismo de Nucleotídeo Único/genética , Arecaceae/genética , Técnicas de Cultura de Tecidos/métodos , Fenótipo , Genótipo , Loci Gênicos/genética , Desequilíbrio de Ligação/genética , Locos de Características Quantitativas/genética
4.
BMC Plant Biol ; 24(1): 271, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605289

RESUMO

BACKGROUND: Agropyron cristatum (L.) is a valuable genetic resource for expanding the genetic diversity of common wheat. Pubing3228, a novel wheat-A. cristatum hybrid germplasm, exhibits several desirable agricultural traits, including high grain number per spike (GNS). Understanding the genetic architecture of GNS in Pubing3228 is crucial for enhancing wheat yield. This study aims to analyze the specific genetic regions and alleles associated with high GNS in Pubing3228. METHODS: The study employed a recombination inbred line (RIL) population derived from a cross between Pubing3228 and Jing4839 to investigate the genetic regions and alleles linked to high GNS. Quantitative Trait Loci (QTL) analysis and candidate gene investigation were utilized to explore these traits. RESULTS: A total of 40 QTLs associated with GNS were identified across 16 chromosomes, accounting for 4.25-17.17% of the total phenotypic variation. Five QTLs (QGns.wa-1D, QGns.wa-5 A, QGns.wa-7Da.1, QGns.wa-7Da.2 and QGns.wa-7Da.3) accounter for over 10% of the phenotypic variation in at least two environments. Furthermore, 94.67% of the GNS QTL with positive effects originated from Pubing3228. Candidate gene analysis of stable QTLs identified 11 candidate genes for GNS, including a senescence-associated protein gene (TraesCS7D01G148000) linked to the most significant SNP (AX-108,748,734) on chromosome 7D, potentially involved in reallocating nutrients from senescing tissues to developing seeds. CONCLUSION: This study provides new insights into the genetic mechanisms underlying high GNS in Pubing3228, offering valuable resources for marker-assisted selection in wheat breeding to enhance yield.


Assuntos
Agropyron , Locos de Características Quantitativas , Locos de Características Quantitativas/genética , Mapeamento Cromossômico , Agropyron/genética , Melhoramento Vegetal , Ligação Genética , Triticum/genética , Fenótipo , Grão Comestível/genética
5.
Sci Rep ; 14(1): 8708, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622173

RESUMO

Recent work has revealed an important role for rare, incompletely penetrant inherited coding variants in neurodevelopmental disorders (NDDs). Additionally, we have previously shown that common variants contribute to risk for rare NDDs. Here, we investigate whether common variants exert their effects by modifying gene expression, using multi-cis-expression quantitative trait loci (cis-eQTL) prediction models. We first performed a transcriptome-wide association study for NDDs using 6987 probands from the Deciphering Developmental Disorders (DDD) study and 9720 controls, and found one gene, RAB2A, that passed multiple testing correction (p = 6.7 × 10-7). We then investigated whether cis-eQTLs modify the penetrance of putatively damaging, rare coding variants inherited by NDD probands from their unaffected parents in a set of 1700 trios. We found no evidence that unaffected parents transmitting putatively damaging coding variants had higher genetically-predicted expression of the variant-harboring gene than their child. In probands carrying putatively damaging variants in constrained genes, the genetically-predicted expression of these genes in blood was lower than in controls (p = 2.7 × 10-3). However, results for proband-control comparisons were inconsistent across different sets of genes, variant filters and tissues. We find limited evidence that common cis-eQTLs modify penetrance of rare coding variants in a large cohort of NDD probands.


Assuntos
Transtornos do Neurodesenvolvimento , Polimorfismo de Nucleotídeo Único , Criança , Humanos , Penetrância , Locos de Características Quantitativas/genética , Transtornos do Neurodesenvolvimento/genética , Transcriptoma
6.
BMC Plant Biol ; 24(1): 290, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627629

RESUMO

BACKGROUND: Flesh firmness is a critical factor that influences fruit storability, shelf-life and consumer's preference as well. However, less is known about the key genetic factors that are associated with flesh firmness in fresh fruits like watermelon. RESULTS: In this study, through bulk segregant analysis (BSA-seq), we identified a quantitative trait locus (QTL) that influenced variations in flesh firmness among recombinant inbred lines (RIL) developed from cross between the Citrullus mucosospermus accession ZJU152 with hard-flesh and Citrullus lanatus accession ZJU163 with soft-flesh. Fine mapping and sequence variations analyses revealed that ethylene-responsive factor 1 (ClERF1) was the most likely candidate gene for watermelon flesh firmness. Furthermore, several variations existed in the promoter region between ClERF1 of two parents, and significantly higher expressions of ClERF1 were found in hard-flesh ZJU152 compared with soft-flesh ZJU163 at key developmental stages. DUAL-LUC and GUS assays suggested much stronger promoter activity in ZJU152 over ZJU163. In addition, the kompetitive allele-specific PCR (KASP) genotyping datasets of RIL populations and germplasm accessions further supported ClERF1 as a possible candidate gene for fruit flesh firmness variability and the hard-flesh genotype might only exist in wild species C. mucosospermus. Through yeast one-hybrid (Y1H) and dual luciferase assay, we found that ClERF1 could directly bind to the promoters of auxin-responsive protein (ClAux/IAA) and exostosin family protein (ClEXT) and positively regulated their expressions influencing fruit ripening and cell wall biosynthesis. CONCLUSIONS: Our results indicate that ClERF1 encoding an ethylene-responsive factor 1 is associated with flesh firmness in watermelon and provide mechanistic insight into the regulation of flesh firmness, and the ClERF1 gene is potentially applicable to the molecular improvement of fruit-flesh firmness by design breeding.


Assuntos
Citrullus , Citrullus/genética , Citrullus/metabolismo , Melhoramento Vegetal , Locos de Características Quantitativas/genética , Frutas/genética , Etilenos/metabolismo , Regiões Promotoras Genéticas/genética
7.
Nature ; 628(8009): 811-817, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38632397

RESUMO

Hybridization allows adaptations to be shared among lineages and may trigger the evolution of new species1,2. However, convincing examples of homoploid hybrid speciation remain rare because it is challenging to demonstrate that hybridization was crucial in generating reproductive isolation3. Here we combine population genomic analysis with quantitative trait locus mapping of species-specific traits to examine a case of hybrid speciation in Heliconius butterflies. We show that Heliconius elevatus is a hybrid species that is sympatric with both parents and has persisted as an independently evolving lineage for at least 180,000 years. This is despite pervasive and ongoing gene flow with one parent, Heliconius pardalinus, which homogenizes 99% of their genomes. The remaining 1% introgressed from the other parent, Heliconius melpomene, and is scattered widely across the H. elevatus genome in islands of divergence from H. pardalinus. These islands contain multiple traits that are under disruptive selection, including colour pattern, wing shape, host plant preference, sex pheromones and mate choice. Collectively, these traits place H. elevatus on its own adaptive peak and permit coexistence with both parents. Our results show that speciation was driven by introgression of ecological traits, and that speciation with gene flow is possible with a multilocus genetic architecture.


Assuntos
Borboletas , Fluxo Gênico , Introgressão Genética , Especiação Genética , Hibridização Genética , Locos de Características Quantitativas , Simpatria , Animais , Borboletas/genética , Borboletas/classificação , Locos de Características Quantitativas/genética , Masculino , Feminino , Simpatria/genética , Isolamento Reprodutivo , Preferência de Acasalamento Animal , Especificidade da Espécie , Asas de Animais/anatomia & histologia , Seleção Genética , Fenótipo , Genoma de Inseto/genética , Pigmentação/genética
8.
Cell Mol Neurobiol ; 44(1): 41, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656449

RESUMO

The cadherin family plays a pivotal role in orchestrating synapse formation in the central nervous system. Cadherin-related family member 1 (CDHR1) is a photoreceptor-specific calmodulin belonging to the expansive cadherin superfamily. However, its role in traumatic brain injury (TBI) remains largely unknown. CDHR1 expression across various brain tissue sites was analyzed using the GSE104687 dataset. Employing a summary-data-based Mendelian Randomization (SMR) approach, integrated analyses were performed by amalgamating genome-wide association study abstracts from TBI with public data on expressed quantitative trait loci and DNA methylation QTL from both blood and diverse brain tissues. CDHR1 expression and localization in different brain tissues were meticulously delineated using western blotting, immunohistochemistry, and enzyme-linked immunosorbent assay. CDHR1 expression was consistently elevated in the TBI group compared to that in the sham group across multiple tissues. The inflammatory response emerged as a crucial biological mechanism, and pro-inflammatory and anti-inflammatory factors were not expressed in either group. Integrated SMR analyses encompassing both blood and brain tissues substantiated the heightened CDHR1 expression profiles, with methylation modifications emerging as potential contributing factors for increased TBI risk. This was corroborated by western blotting and immunohistochemistry, confirming augmented CDHR1 expression following TBI. This multi-omics-based genetic association study highlights the elevated TBI risk associated with CDHR1 expression coupled with putative methylation modifications. These findings provide compelling evidence for future targeted investigations and offer promising avenues for developing interventional therapies for TBI.


Assuntos
Lesões Encefálicas Traumáticas , Caderinas , Metilação de DNA , Lesões Encefálicas Traumáticas/genética , Lesões Encefálicas Traumáticas/metabolismo , Humanos , Masculino , Metilação de DNA/genética , Caderinas/genética , Caderinas/metabolismo , Locos de Características Quantitativas/genética , Estudo de Associação Genômica Ampla , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas Relacionadas a Caderinas
9.
Hum Genomics ; 18(1): 43, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659056

RESUMO

OBJECTIVE: Myasthenia gravis (MG) is a complex autoimmune disease affecting the neuromuscular junction with limited drug options, but the field of MG treatment recently benefits from novel biological agents. We performed a drug-targeted Mendelian randomization (MR) study to identify novel therapeutic targets of MG. METHODS: Cis-expression quantitative loci (cis-eQTL), which proxy expression levels for 2176 druggable genes, were used for MR analysis. Causal relationships between genes and disease, identified by eQTL MR analysis, were verified by comprehensive sensitivity, colocalization, and protein quantitative loci (pQTL) MR analyses. The protein-protein interaction (PPI) analysis was also performed to extend targets, followed by enzyme-linked immunosorbent assay (ELISA) to explore the serum level of drug targets in MG patients. A phenome-wide MR analysis was then performed to assess side effects with a clinical trial review assessing druggability. RESULTS: The eQTL MR analysis has identified eight potential targets for MG, one for early-onset MG and seven for late-onset MG. Further colocalization analyses indicated that CD226, CDC42BPB, PRSS36, and TNFSF12 possess evidence for colocalization with MG or late-onset MG. pQTL MR analyses identified the causal relations of TNFSF12 and CD226 with MG and late-onset MG. Furthermore, PPI analysis has revealed the protein interaction between TNFSF12-TNFSF13(APRIL) and TNFSF12-TNFSF13B(BLyS). Elevated TNFSF13 serum level of MG patients was also identified by ELISA experiments. This study has ultimately proposed three promising therapeutic targets (TNFSF12, TNFSF13, TNFSF13B) of MG. CONCLUSIONS: Three drug targets associated with the BLyS/APRIL pathway have been identified. Multiple biological agents, including telitacicept and belimumab, are promising for MG therapy.


Assuntos
Análise da Randomização Mendeliana , Miastenia Gravis , Locos de Características Quantitativas , Humanos , Miastenia Gravis/genética , Miastenia Gravis/tratamento farmacológico , Miastenia Gravis/patologia , Miastenia Gravis/sangue , Locos de Características Quantitativas/genética , Mapas de Interação de Proteínas/genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único/genética
10.
BMC Plant Biol ; 24(1): 316, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654195

RESUMO

BACKGROUND: Salt stress significantly reduces soybean yield. To improve salt tolerance in soybean, it is important to mine the genes associated with salt tolerance traits. RESULTS: Salt tolerance traits of 286 soybean accessions were measured four times between 2009 and 2015. The results were associated with 740,754 single nucleotide polymorphisms (SNPs) to identify quantitative trait nucleotides (QTNs) and QTN-by-environment interactions (QEIs) using three-variance-component multi-locus random-SNP-effect mixed linear model (3VmrMLM). As a result, eight salt tolerance genes (GmCHX1, GsPRX9, Gm5PTase8, GmWRKY, GmCHX20a, GmNHX1, GmSK1, and GmLEA2-1) near 179 significant and 79 suggested QTNs and two salt tolerance genes (GmWRKY49 and GmSK1) near 45 significant and 14 suggested QEIs were associated with salt tolerance index traits in previous studies. Six candidate genes and three gene-by-environment interactions (GEIs) were predicted to be associated with these index traits. Analysis of four salt tolerance related traits under control and salt treatments revealed six genes associated with salt tolerance (GmHDA13, GmPHO1, GmERF5, GmNAC06, GmbZIP132, and GmHsp90s) around 166 QEIs were verified in previous studies. Five candidate GEIs were confirmed to be associated with salt stress by at least one haplotype analysis. The elite molecular modules of seven candidate genes with selection signs were extracted from wild soybean, and these genes could be applied to soybean molecular breeding. Two of these genes, Glyma06g04840 and Glyma07g18150, were confirmed by qRT-PCR and are expected to be key players in responding to salt stress. CONCLUSIONS: Around the QTNs and QEIs identified in this study, 16 known genes, 6 candidate genes, and 8 candidate GEIs were found to be associated with soybean salt tolerance, of which Glyma07g18150 was further confirmed by qRT-PCR.


Assuntos
Interação Gene-Ambiente , Genes de Plantas , Soja , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Tolerância ao Sal , Soja/genética , Soja/fisiologia , Tolerância ao Sal/genética , Locos de Características Quantitativas/genética , Fenótipo
11.
Physiol Plant ; 176(2): e14301, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38629128

RESUMO

Salt stress is one of the major factors that limits rice production. Therefore, identification of salt-tolerant alleles from wild rice is important for rice breeding. In this study, we constructed a set of chromosome segment substitution lines (CSSLs) using wild rice as the donor parent and cultivated rice Nipponbare (Nip) as the recurrent parent. Salt tolerance germinability (STG) was evaluated, and its association with genotypes was determined using this CSSL population. We identified 17 QTLs related to STG. By integrating the transcriptome and genome data, four candidate genes were identified, including the previously reported AGO2 and WRKY53. Compared with Nip, wild rice AGO2 has a structure variation in its promoter region and the expression levels were upregulated under salt treatments; wild rice WRKY53 also has natural variation in its promoter region, and the expression levels were downregulated under salt treatments. Wild rice AGO2 and WRKY53 alleles have combined effects for improving salt tolerance at the germination stage. One CSSL line, CSSL118 that harbors these two alleles was selected. Compared with the background parent Nip, CSSL118 showed comprehensive salt tolerance and higher yield, with improved transcript levels of reactive oxygen species scavenging genes. Our results provided promising genes and germplasm resources for future rice salt tolerance breeding.


Assuntos
Genes de Plantas , Oryza , Melhoramento Vegetal , Tolerância ao Sal , Oryza/anatomia & histologia , Oryza/genética , Oryza/crescimento & desenvolvimento , Tolerância ao Sal/genética , Cromossomos de Plantas/genética , Alelos , Melhoramento Vegetal/métodos , Locos de Características Quantitativas/genética , Genótipo , Transcriptoma , Genoma de Planta/genética , Regiões Promotoras Genéticas , Regulação da Expressão Gênica de Plantas , Germinação , Brotos de Planta , Raízes de Plantas , Técnicas de Genotipagem , Polimorfismo Genético , Fenótipo
12.
Cell Genom ; 4(4): 100538, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38565144

RESUMO

Nearly all trait-associated variants identified in genome-wide association studies (GWASs) are noncoding. The cis regulatory effects of these variants have been extensively characterized, but how they affect gene regulation in trans has been the subject of fewer studies because of the difficulty in detecting trans-expression quantitative loci (eQTLs). We developed trans-PCO for detecting trans effects of genetic variants on gene networks. Our simulations demonstrate that trans-PCO substantially outperforms existing trans-eQTL mapping methods. We applied trans-PCO to two gene expression datasets from whole blood, DGN (N = 913) and eQTLGen (N = 31,684), and identified 14,985 high-quality trans-eSNP-module pairs associated with 197 co-expression gene modules and biological processes. We performed colocalization analyses between GWAS loci of 46 complex traits and the trans-eQTLs. We demonstrated that the identified trans effects can help us understand how trait-associated variants affect gene regulatory networks and biological pathways.


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Locos de Características Quantitativas/genética , Regulação da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Fenótipo
13.
Sci Rep ; 14(1): 6435, 2024 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499600

RESUMO

Hyperparathyroidism (HPT) manifests as a complex condition with a substantial disease burden. While advances have been made in surgical interventions and non-surgical pharmacotherapy for the management of hyperparathyroidism, radical options to halt underlying disease progression remain lacking. Identifying putative genetic drivers and exploring novel drug targets that can impede HPT progression remain critical unmet needs. A Mendelian randomization (MR) analysis was performed to uncover putative therapeutic targets implicated in hyperparathyroidism pathology. Cis-expression quantitative trait loci (cis-eQTL) data serving as genetic instrumental variables were obtained from the eQTLGen Consortium and Genotype-Tissue Expression (GTEx) portal. Hyperparathyroidism summary statistics for single nucleotide polymorphism (SNP) associations were sourced from the FinnGen study (5590 cases; 361,988 controls). Colocalization analysis was performed to determine the probability of shared causal variants underlying SNP-hyperparathyroidism and SNP-eQTL links. Five drug targets (CMKLR1, FSTL1, IGSF11, PIK3C3 and SLC40A1) showed significant causation with hyperparathyroidism in both eQTLGen and GTEx cohorts by MR analysis. Specifically, phosphatidylinositol 3-kinase catalytic subunit type 3 (PIK3C3) and solute carrier family 40 member 1 (SLC40A1) showed strong evidence of colocalization with HPT. Multivariable MR and Phenome-Wide Association Study analyses indicated these two targets were not associated with other traits. Additionally, drug prediction analysis implies the potential of these two targets for future clinical applications. This study identifies PIK3C3 and SLC40A1 as potential genetically proxied druggable genes and promising therapeutic targets for hyperparathyroidism. Targeting PIK3C3 and SLC40A1 may offer effective novel pharmacotherapies for impeding hyperparathyroidism progression and reducing disease risk. These findings provide preliminary genetic insight into underlying drivers amenable to therapeutic manipulation, though further investigation is imperative to validate translational potential from preclinical models through clinical applications.


Assuntos
Proteínas Relacionadas à Folistatina , Hiperparatireoidismo , Humanos , Análise da Randomização Mendeliana , Locos de Características Quantitativas/genética , Classe III de Fosfatidilinositol 3-Quinases , Efeitos Psicossociais da Doença , Estudo de Associação Genômica Ampla
14.
Nat Commun ; 15(1): 2211, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480722

RESUMO

Low-temperature germination (LTG) is an important agronomic trait for rice (Oryza sativa). Japonica rice generally has greater capacity for germination at low temperatures than the indica subpopulation. However, the genetic basis and molecular mechanisms underlying this complex trait are poorly understood. Here, we report that OsUBC12, encoding an E2 ubiquitin-conjugating enzyme, increases low-temperature germinability in japonica, owing to a transposon insertion in its promoter enhancing its expression. Natural variation analysis reveals that transposon insertion in the OsUBC12 promoter mainly occurs in the japonica lineage. The variation detected in eight representative two-line male sterile lines suggests the existence of this allele introgression by indica-japonica hybridization breeding, and varieties carrying the japonica OsUBC12 locus (transposon insertion) have higher low-temperature germinability than varieties without the locus. Further molecular analysis shows that OsUBC12 negatively regulate ABA signaling. OsUBC12-regulated seed germination and ABA signaling mainly depend on a conserved active site required for ubiquitin-conjugating enzyme activity. Furthermore, OsUBC12 directly associates with rice SUCROSE NON-FERMENTING 1-RELATED PROTEIN KINASE 1.1 (OsSnRK1.1), promoting its degradation. OsSnRK1.1 inhibits LTG by enhancing ABA signaling and acts downstream of OsUBC12. These findings shed light on the underlying mechanisms of UBC12 regulating LTG and provide genetic reference points for improving LTG in indica rice.


Assuntos
Germinação , Oryza , Germinação/genética , Oryza/metabolismo , Locos de Características Quantitativas/genética , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Melhoramento Vegetal , Temperatura Baixa
15.
Genes (Basel) ; 15(3)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38540437

RESUMO

Genomic data in Gossypium provide numerous data resources for the cotton genomics community. However, to fill the gap between genomic analysis and breeding field work, detecting the featured genomic items of a subset cohort is essential for geneticists. We developed FPFinder v1.0 software to identify a subset of the cohort's fingerprint genomic sites. The FPFinder was developed based on the term frequency-inverse document frequency algorithm. With the short-read sequencing of an elite cotton pedigree, we identified 453 pedigree fingerprint genomic sites and found that these pedigree-featured sites had a role in cotton development. In addition, we applied FPFinder to evaluate the geographical bias of fiber-length-related genomic sites from a modern cotton cohort consisting of 410 accessions. Enriching elite sites in cultivars from the Yangtze River region resulted in the longer fiber length of Yangze River-sourced accessions. Apart from characterizing functional sites, we also identified 12,536 region-specific genomic sites. Combining the transcriptome data of multiple tissues and samples under various abiotic stresses, we found that several region-specific sites contributed to environmental adaptation. In this research, FPFinder revealed the role of the cotton pedigree fingerprint and region-specific sites in cotton development and environmental adaptation, respectively. The FPFinder can be applied broadly in other crops and contribute to genetic breeding in the future.


Assuntos
Gossypium , Melhoramento Vegetal , Humanos , Gossypium/genética , Locos de Características Quantitativas/genética , Genômica , Genoma de Planta
16.
Nat Commun ; 15(1): 2713, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548728

RESUMO

DNA methylation is an ideal trait to study the extent of the shared genetic control across ancestries, effectively providing hundreds of thousands of model molecular traits with large QTL effect sizes. We investigate cis DNAm QTLs in three European (n = 3701) and two East Asian (n = 2099) cohorts to quantify the similarities and differences in the genetic architecture across populations. We observe 80,394 associated mQTLs (62.2% of DNAm probes with significant mQTL) to be significant in both ancestries, while 28,925 mQTLs (22.4%) are identified in only a single ancestry. mQTL effect sizes are highly conserved across populations, with differences in mQTL discovery likely due to differences in allele frequency of associated variants and differing linkage disequilibrium between causal variants and assayed SNPs. This study highlights the overall similarity of genetic control across ancestries and the value of ancestral diversity in increasing the power to detect associations and enhancing fine mapping resolution.


Assuntos
Metilação de DNA , População do Leste Asiático , Humanos , Metilação de DNA/genética , Locos de Características Quantitativas/genética , Regulação da Expressão Gênica , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único , Estudo de Associação Genômica Ampla
17.
Mol Genet Genomics ; 299(1): 38, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517563

RESUMO

Kinesin is a kind of motor protein, which interacts with microtubule filaments and regulates cellulose synthesis. Cotton fiber is a natural model for studying the cellular development and cellulose synthesis. Therefore, a systematic research of kinesin gene family in cotton (Gossypium spp.) will be beneficial for both understanding the function of kinesin protein and assisting the fiber improvement. Here, we aimed to identify the key kinesin genes present in cotton by combining genome-wide expression profile data, association mapping, and public quantitative trait loci (QTLs) in upland cotton (G. hirsutum L.). Results showed that 159 kinesin genes, including 15 genes of the kinesin-13 gene subfamily, were identified in upland cotton; of which 157 kinesin genes can be traced back to the diploid ancestors, G. raimondii and G. arboreum. Using a combined analysis of public QTLs and genome-wide expression profile information, there were 29 QTLs co-localized together with 28 kinesin genes in upland cotton, including 10 kinesin-13 subfamily genes. Genome-wide expression profile data indicated that, among the 28 co-localized genes, seven kinesin genes were predominantly expressed in fibers or ovules. By association mapping analysis, 30 kinesin genes were significantly associated with three fiber traits, among which a kinesin-13 gene, Ghir_A11G028430, was found to be associated with both cotton boll length and lint weight, and one kinesin-7 gene, Ghir_D04G017880 (Gh_Kinesin7), was significantly associated with fiber strength. In addition, two missense mutations were identified in the motor domain of the Gh_Kinesin7 protein. Overall, the kinesin gene family seemingly plays an important role in cotton fiber and boll development. The exploited kinesin genes will be beneficial for the genetic improvement of fiber quality and yield.


Assuntos
Gossypium , Cinesinas , Gossypium/genética , Cinesinas/genética , Fibra de Algodão , Locos de Características Quantitativas/genética , Fenótipo , Celulose
18.
Cell Genom ; 4(3): 100509, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38430910

RESUMO

Steady-state expression quantitative trait loci (eQTLs) explain only a fraction of disease-associated loci identified through genome-wide association studies (GWASs), while eQTLs involved in gene-by-environment (GxE) interactions have rarely been characterized in humans due to experimental challenges. Using a baboon model, we found hundreds of eQTLs that emerge in adipose, liver, and muscle after prolonged exposure to high dietary fat and cholesterol. Diet-responsive eQTLs exhibit genomic localization and genic features that are distinct from steady-state eQTLs. Furthermore, the human orthologs associated with diet-responsive eQTLs are enriched for GWAS genes associated with human metabolic traits, suggesting that context-responsive eQTLs with more complex regulatory effects are likely to explain GWAS hits that do not seem to overlap with standard eQTLs. Our results highlight the complexity of genetic regulatory effects and the potential of eQTLs with disease-relevant GxE interactions in enhancing the understanding of GWAS signals for human complex disease using non-human primate models.


Assuntos
Dieta Hiperlipídica , Estudo de Associação Genômica Ampla , Estudo de Associação Genômica Ampla/métodos , Dieta Hiperlipídica/efeitos adversos , Regulação da Expressão Gênica , Locos de Características Quantitativas/genética , Fenótipo
19.
Nat Genet ; 56(4): 605-614, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38514782

RESUMO

The relationship between genetic variation and gene expression in brain cell types and subtypes remains understudied. Here, we generated single-nucleus RNA sequencing data from the neocortex of 424 individuals of advanced age; we assessed the effect of genetic variants on RNA expression in cis (cis-expression quantitative trait loci) for seven cell types and 64 cell subtypes using 1.5 million transcriptomes. This effort identified 10,004 eGenes at the cell type level and 8,099 eGenes at the cell subtype level. Many eGenes are only detected within cell subtypes. A new variant influences APOE expression only in microglia and is associated with greater cerebral amyloid angiopathy but not Alzheimer's disease pathology, after adjusting for APOEε4, providing mechanistic insights into both pathologies. Furthermore, only a TMEM106B variant affects the proportion of cell subtypes. Integration of these results with genome-wide association studies highlighted the targeted cell type and probable causal gene within Alzheimer's disease, schizophrenia, educational attainment and Parkinson's disease loci.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Estudo de Associação Genômica Ampla/métodos , Encéfalo/metabolismo , Locos de Características Quantitativas/genética , Variação Genética/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética
20.
Nat Genet ; 56(4): 595-604, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38548990

RESUMO

Common genetic variants confer substantial risk for chronic lung diseases, including pulmonary fibrosis. Defining the genetic control of gene expression in a cell-type-specific and context-dependent manner is critical for understanding the mechanisms through which genetic variation influences complex traits and disease pathobiology. To this end, we performed single-cell RNA sequencing of lung tissue from 66 individuals with pulmonary fibrosis and 48 unaffected donors. Using a pseudobulk approach, we mapped expression quantitative trait loci (eQTLs) across 38 cell types, observing both shared and cell-type-specific regulatory effects. Furthermore, we identified disease interaction eQTLs and demonstrated that this class of associations is more likely to be cell-type-specific and linked to cellular dysregulation in pulmonary fibrosis. Finally, we connected lung disease risk variants to their regulatory targets in disease-relevant cell types. These results indicate that cellular context determines the impact of genetic variation on gene expression and implicates context-specific eQTLs as key regulators of lung homeostasis and disease.


Assuntos
Fibrose Pulmonar , Locos de Características Quantitativas , Humanos , Locos de Características Quantitativas/genética , Fibrose Pulmonar/genética , Regulação da Expressão Gênica/genética , Pulmão , Herança Multifatorial , Estudo de Associação Genômica Ampla/métodos , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...